Features Fusion for Classification of Logos

نویسندگان

  • N. Vinay Kumar
  • Pratheek
  • V. Vijaya Kantha
  • K. N. Govindaraju
  • D. S. Guru
چکیده

In this paper, a logo classification system based on the appearance of logo images is proposed. The proposed classification system makes use of global characteristics of logo images for classification. Color, texture, and shape of a logo wholly describe the global characteristics of logo images. The various combinations of these characteristics are used for classification. The combination contains only with single feature or with fusion of two features or fusion of all three features considered at a time respectively. Further, the system categorizes the logo image into: a logo image with fully text or with fully symbols or containing both symbols and texts.. The K-Nearest Neighbour (K-NN) classifier is used for classification. Due to the lack of color logo image dataset in the literature, the same is created consisting 5044 color logo images. Finally, the performance of the classification system is evaluated through accuracy, precision, recall and F-measure computed from the confusion matrix. The experimental results show that the most promising results are obtained for fusion of features. © 2015 The Authors. Published by Elsevier B.V. Peer-review under responsibility of organizing committee of the 2016 International Conference on Computational Modeling and Security (CMS 2016).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations

The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...

متن کامل

Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data

Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...

متن کامل

VHR Semantic Labeling by Random Forest Classification and Fusion of Spectral and Spatial Features on Google Earth Engine

Semantic labeling is an active field in remote sensing applications. Although handling high detailed objects in Very High Resolution (VHR) optical image and VHR Digital Surface Model (DSM) is a challenging task, it can improve the accuracy of semantic labeling methods. In this paper, a semantic labeling method is proposed by fusion of optical and normalized DSM data. Spectral and spatial featur...

متن کامل

مقایسه لوگوس مسیحیت با انسان کامل در نزد ابن عربی

The idea of Logos is detectable in prechristianity, ancient Greek philosophy, Judaism(Old Testament and some writings of Philon of Alexandria). For the first time, in Christianity, the idea of Logos was identified with historical Jesus and so Christians specially Church Fathers attributed some features to Logos which are very similar to Muslim mystics’ conception of the Perfect Man-Insān-i k...

متن کامل

Change Detection in Urban Area Using Decision Level Fusion of Change Maps Extracted from Optic and SAR Images

The last few decades witnessed high urban growth rates in many countries. Urban growth can be mapped and measured by using remote sensing data and techniques along with several statistical measures. The purpose of this research is to detect the urban change that is used for urban planning. Change detection using remote sensing images can be classified into three methods: algebra-based, transfor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1609.01414  شماره 

صفحات  -

تاریخ انتشار 2016